Scaling of titanium implants entrains inflammation-induced osteolysis

نویسندگان

  • Michal Eger
  • Nir Sterer
  • Tamar Liron
  • David Kohavi
  • Yankel Gabet
چکیده

With millions of new dental and orthopedic implants inserted annually, periprosthetic osteolysis becomes a major concern. In dentistry, peri-implantitis management includes cleaning using ultrasonic scaling. We examined whether ultrasonic scaling releases titanium particles and induces inflammation and osteolysis. Titanium discs with machined, sandblasted/acid-etched and sandblasted surfaces were subjected to ultrasonic scaling and we physically and chemically characterized the released particles. These particles induced a severe inflammatory response in macrophages and stimulated osteoclastogenesis. The number of released particles and their chemical composition and nanotopography had a significant effect on the inflammatory response. Sandblasted surfaces released the highest number of particles with the greatest nanoroughness properties. Particles from sandblasted/acid-etched discs induced a milder inflammatory response than those from sandblasted discs but a stronger inflammatory response than those from machined discs. Titanium particles were then embedded in fibrin membranes placed on mouse calvariae for 5 weeks. Using micro-CT, we observed that particles from sandblasted discs induced more osteolysis than those from sandblasted/acid-etched discs. In summary, ultrasonic scaling of titanium implants releases particles in a surface type-dependent manner and may aggravate peri-implantitis. Future studies should assess whether surface roughening affects the extent of released wear particles and aseptic loosening of orthopedic implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical instability and titanium particles induce similar transcriptomic changes in a rat model for periprosthetic osteolysis and aseptic loosening

Wear debris particles released from prosthetic bearing surfaces and mechanical instability of implants are two main causes of periprosthetic osteolysis. While particle-induced loosening has been studied extensively, mechanisms through which mechanical factors lead to implant loosening have been less investigated. This study compares the transcriptional profiles associated with osteolysis in a r...

متن کامل

Progranulin suppresses titanium particle induced inflammatory osteolysis by targeting TNFα signaling

Aseptic loosening is a major complication of prosthetic joint surgery, characterized by chronic inflammation, pain, and osteolysis surrounding the bone-implant interface. Progranulin (PGRN) is known to have anti-inflammatory action by binding to Tumor Necrosis Factor (TNF) receptors and antagonizing TNFα. Here we report that titanium particles significantly induced PGRN expression in RAW264.7 c...

متن کامل

Periprosthetic osteolysis: characterizing the innate immune response to titanium wear-particles.

Osteolysis of bone following total hip replacement is a major clinical problem. Examination of the areas surrounding failed implants has indicated an increase in the bone-resorption-inducing cytokine, interleukin 1β (IL-1β). NALP3, a NOD-like receptor protein located in the cytosol of macrophages, signals the cleavage of pro-IL-1β into its mature, secreted form, IL-1β. Here we showed that titan...

متن کامل

Polyethylene Particles Induce Osteolysis in Calvaria of Wild-type Andimmunodeficient Mice

Introduction: Osteolysis around orthopaedic implants, a consequence of the wear process, is a major problem for the long-term survival of the implants. We and others previously reported quantitative versions of the murine calvarial model of titanium particle induced osteolysis [1,2]. However, the most common particle type that is generated from orthopaedic implants is ultrahigh molecular weight...

متن کامل

Inhibitory effect of quercetin on titanium particle induced endoplasmic reticulum stress related apoptosis and in vivo osteolysis

Wear particle-induced periprosthetic osteolysis is the main cause of aseptic loosening of orthopaedic implants. The aim of this study is to determine the protective effect of quercetin (QUE) against titanium (Ti) particle-induced ERS-related apoptosis and osteolysis. In this study, RAW264.7 cells were pretreated with different concentrations (40, 80, and 160 μmol/l) of QUE for 30 min and then t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017